
focus

�	 I E E E S o f t w a r E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 	 0 74 0 - 74 5 9 / 0 8 / $ 2 5 . 0 0 © 2 0 0 8 I E E E

opp or t un i s t i c s o f t war e s y s t em s deve l opm en t

Stimulating Creativity
through Opportunistic
Software Development

Željko Obrenović , Technical University, Eindhoven

Dragan Gaševic, Athabasca University

Anton Eliens, Vrije Universiteit, Amsterdam

Using opportunistic
software development
principles in computer
engineering education
encourages students
to be creative and to
develop solutions that
cross the boundaries
of different
technologies.

I
n “To Hull and Back,” the 1985 Christmas special of the British sitcom Only Fools

and Horses, main characters Del, Rodney, and Uncle Albert decide to sail from Lon-
don to Amsterdam in a hired boat. “Experienced seaman” Uncle Albert arrives to
captain the boat. However, in the first serious test of his sailing skills, when the

group gets lost in the North Sea, they discover that Uncle Albert has no navigational ex-
perience, despite spending years in the Royal Navy. He explains that during his days in
the navy, he was a boiler maintenance man and didn’t have to learn navigation because

“you see, the boiler has a tendency to go wherever
the ship’s going.”

You can find a similar story in software engi-
neering practice and education. Software develop-
ers and students tend to be skilled in a particular
technology, such as Microsoft .NET, Java, SOAP,
PHP, or Flash. But when they have to navigate in
a larger context and connect to systems built by
others and in other technologies, they often be-
come lost. Universities, practitioner books, and
industrial training organizations contribute to this
problem. They emphasize creating masterpieces
of code from blank sheets of paper, ignoring tech-
nological issues or treating them in isolation, and
largely overlooking the different skills required
to integrate and test software that the individual
didn’t create and doesn’t control.1

Here, we describe our experiences using op-

portunistic software development to fight the
boiler maintenance man syndrome. We created
an opportunistic software development-based di-
dactic method based on the principles of creativ-
ity support tools. We encouraged students in our
courses to use this method to develop solutions
that cross the boundaries of diverse technologies.
By teaching students to opportunistically com-
bine systems that were never meant to work to-
gether or even to be reused, we created a space in
which they could produce many innovative ideas
and solutions.

New Requirements for Software
Engineering Education
To make software engineering education more
practical and useful to students once they complete
their studies, several computer science depart-

	 November/December 2008 I E E E S o f t w a r E 	 �

ments started to promote a design-based education
(see the “Rethinking Software Engineering Educa-
tion” sidebar). In design-based courses, students
learn by building concrete and realistic solutions.
Although these approaches use different means,
they introduce three important requirements.

First, they suggest that educators provide a rich,
more realistic and engaging development context.
Having deadlines, for example, teaches students
to frame problems and solutions more realistically,
while working with others teaches them to work
in teams.

In addition, software engineering courses
should let students develop their own designs
through rapid prototyping. Assignments that
encourage and stimulate student designs can
increase students’ involvement in their work.2
Building and implementing a concrete prototype
can also help students see incompleteness and in-
consistencies in their ideas.3

Finally, such courses should use a didactic
method that supports creative thinking. Students
must learn not only the details of a particular
technology, but also innovative ways of applying
it. Collaboration and public performance, for ex-
ample, let students exchange ideas and get feed-
back on their work.

Framework for Opportunistic
Software Development Education
To support these educational requirements, we
developed an educational framework based on
ideas from opportunistic software development.
Opportunistic software development is a good
candidate for supporting new requirements for
software engineering education because it em-
phasizes creativity, innovation, and imaginative
ways of finding and gluing software to meet di-
verse users’ needs.

Figure 1 shows our framework, which builds on
our previous work in opportunistic software devel-
opment with diverse software components.4 The
framework’s tools, environments, and guidelines
support the creation of a rich development context
from available software, rapid prototyping, and
student creativity.

a rich Development Context
Our educational framework’s main goal is to
create a context in which students can focus on
higher-level, innovative software composition with
advanced components. To help educators create
such a context from a range of diverse software
components and services, we developed a prag-
matic approach to software integration.4 Our

Amico (adaptable multi-interface communicator,
http://amico.sourceforge.net) middleware plat-
form supports this approach. Amico provides a
common space in which users can interconnect di-
verse software services and components. We adopt
a service-oriented approach to integrating diverse
components. We run components as stand-alone

Rethinking Software
Engineering Education

Software engineering educators must teach students to think creatively to find
innovative solutions to real problems. Often, however, students finish their
studies without ever being exposed to such problems. Having identified this
gap between typical computer science education and software engineering
practice, some computer science departments have used different approach-
es to teach students skills that are closer to software engineering practice.

Fred Martin has argued for a more realistic educational context for soft-
ware engineering.1 He claims that teaching should be interactive and collab-
orative, noting that oversimplified toy examples represent the current state of
the practice in software engineering education. Chuan-Hoo Tan and Hock-
Hai Teo also argue that giving students experience developing and delivering
large-scale systems under time constraints and shifting deadlines can better
prepare them for future challenges.2

To make software development education more engaging and realistic,
several universities have begun to introduce courses on games development.
Kajal Claypool and Mark Claypool argue that many projects currently used
in software engineering curricula lack both a fun factor to engage students
and the practical realism of engineering projects that include other computer
science disciplines such as networks or human-computer interaction.3

Ian Parberry and his colleagues explored how instructors can use game
programming with art students, arguing that such an approach creates the
opportunity for diverse communities of students to collaborate on joint proj-
ects.4 Ming-Hsin Tsai and his colleagues also applied game design in the ed-
ucation of art and design students.5 They report that the students made com-
plete games, not just oversimplified exercises or simple walk-through scenes.
Moreover, they gained enough fundamental programming knowledge to take
intermediate programming courses.

The Rethinking CS101 Project (www.cs101.org) claims that most introduc-
tory programming courses—which typically teach computation as sequential
problem solving—are outdated. Rather, such courses should emphasize inter-
action among processes.

References
 1. F. Martin, “Toy Projects Considered Harmful,” Comm. ACM, vol. 49, no. 7, 2006, pp. 113–116.
 2. C. Tan and H. Teo, “Training Future Software Developers to Acquire Agile Development Skills,”

Comm. ACM, vol. 50, no. 12, 2007, pp. 97–98.
 3. K. Claypool and M. Claypool, “Teaching Software Engineering through Game Design,” Proc.

10th Ann. Sigcse Conf. Innovation and Technology in Computer Science Education (ITiCSE 05),
ACM Press, 2005, pp. 123–127.

 4. I. Parberry, M.B. Kazemzadeh, and T. Roden, “The Art and Science of Game Programming,”
Proc. 37th Sigcse Technical Symp. Computer Science Education (SigcSe 06), ACM Press, 2006,
pp. 510–514.

 5. M. Tsai, C. Huang, and J. Zeng, “Game Programming Courses for Nonprogrammers,” Proc.
2006 Int’l Conf. Game Research and Development, ACM Int’l Conf. Proc. Series, vol. 223,
ACM Press, 2006, pp. 219–223.

�	 I E E E S o f t w a r E w w w . c o m p u t e r . o r g / s o f t w a r e

applications that offer their functionality through
open communication interfaces. Building, install-
ing, and running stand-alone programs is usually
a straightforward activity, even for users unfamil-
iar with the component’s technology (for example,
even if you don’t know Python or Java, it’s still rela-
tively easy to install interpreters for these languages
and build and run their applications). Therefore,
applications written in one language can more eas-
ily use components written in another language
(for example, you can expose a component’s func-
tions with the Python Open Sound Control (OSC)
server library, which other components can access
through Java or C++ OSC client libraries).

Turning software components into stand-alone
services doesn’t require changing their basic func-
tionality. You need only add the code offering the
functionality through any open communication
interface, such as XML-RPC, OSC, SOAP, or an
application-specific TCP or UDP (User Datagram
Protocol) interface.

tools for rapid Prototyping
We support diverse development environments on
top of our middleware framework. We don’t limit
students in their choice of development technology,
and we provide several solutions, including

spreadsheets for students with limited or no
programming skills;

■

Web browser scripting for students with Web
development experience, including asynchro-
nous JavaScript and XML (Ajax), applet sup-
port, and browser extensions;
declarative programming mashups for students
with experience in declarative programming
languages, including XML-based configura-
tion files and Prolog; and
programming libraries for students with ex-
perience in procedural and object-oriented
languages.

Users can start with a basic and simple development
environment (such as a spreadsheet), switching to a
more advanced mashup interface as their expertise
develops and they need more complex functional-
ity. For example, in our intelligent multimedia tech-
nology course (described later), students initially
used spreadsheets to quickly sketch, discuss, and
evaluate interactive system prototypes. They then
switched to declarative and procedural program-
ming and Web browser extensions to create more
complex solutions.

Various tools follow this design philosophy.
Many video games have dozens of layers, most
search engines have novice and advanced layers (for
example, Google and Yahoo), and many art and
video tools have three or more workspaces (for ex-
ample, Apple Final Cut Pro and Adobe Premiere).

Creativity Support Principles
as a Didactic Method
Software construction requires approaches that em-
power and liberate the creative mind.3 Opportunis-
tic software development offers many possibilities;
however, conventional approaches can’t easily solve
problems such as black-box components that lack
detailed API descriptions and interoperability. Deal-
ing with such problems requires creativity. Many
design-based software engineering courses implic-
itly support creative thinking. We wanted, however,
a more structured set of guidelines to support cre-
ative and innovative thinking in dealing with op-
portunistic software development challenges.

After reviewing other researchers’ experiences,
we chose to reuse the design principles defined by
Mitchel Resnick and his colleagues.5 By reusing
existing principles, we hoped to put opportunistic
software development into a broader context of ex-
isting creativity-support tools.5–7 Resnick and col-
leagues define the following design principles:

Support exploration. Let users try many alter-
natives before settling on a final design.
Support low thresholds, high ceilings, and wide

■

■

■

■

■

Amico toolset

Support rapid prototyping

Amico framework for
opportunistic software
development education

End-user
and agile software

development
environments

Open source
software

components

Existing
software components

Environments
for rapid prototyping

Hacking
Interactive
art projects

Creativity-
support tools

Design principles for
creativity support

Create rich development context

Support creativity

Ideas about innovation and
nontraditional problem solving

Figure 1. The framework for opportunistic software development
education. Our framework consists of a set of tools, including our
Amico (adaptable multi-interface communicator) middleware, and
guidelines that can help educators to teach students to be more
creative and innovative.

	 November/December 2008 I E E E S o f t w a r E 	 �

walls. Make it easy for beginners to start, but
also let experts work on more complicated proj-
ects, and support a wide range of explorations.
Support many paths and many styles. Assist
learners with different styles and approaches.
Support collaboration. Encourage teamwork.
Support open interchange. Diverse tools that
support creative work should be interoperable.
Make it as simple as possible—and maybe
even simpler. Avoid making tools too complex
by adding unnecessary features.
Choose black boxes carefully. Carefully select
the primitives that users will manipulate.
Invent things that you would want to use. Use
your own experience in creative work.
Balance user suggestions with observation and
participatory processes. Involve end users in the
design process.
Iterate, iterate—then iterate again. Support it-
erative design using prototypes.
Design for designers. Build tools that let others
design.
Evaluate your tools. Use empirical testing
methods; don’t rely on intuition.

Software engineering educators can also use ex-
amples from interactive art projects and hack-
ing8 to demonstrate innovation and nontradi-
tional problem solving. To find these examples, we
looked at electronic art conferences, such as Ars
Electronica (www.aec.at), the Dutch Electronic
Arts Festival (DEAF, www.deaf07.nl), and ACM’s
Multimedia Interactive Arts track. We also look
at hacking conferences, such as Blackhat (www.
blackhat.com) and Chaos Computer Congresses
(www.ccc.de).

Applying the Framework
We aimed to create a generic environment that edu-
cators could use to promote opportunistic software
development in different courses and domains. To
adapt this framework to a concrete course, we pro-
pose the following steps:

Define a rich development context. Select rep-
resentative open source software or commercial
projects and services, adapt them, and option-
ally connect them to our infrastructure using a
service-oriented approach.
Create illustrative examples. In each develop-
ment environment that you plan to use during
the course, show students how they can use and
interconnect the different components. If pos-
sible, make components and examples open
source and available online.

■

■

■

■

■

■

■

■

■

■

■

■

Define course objectives and assignments. Us-
ing the creativity-support tool design principles
as a guideline, create resources necessary to
support these objectives, including mailing lists,
links to inspiring projects, and Web sites where
students can share their designs and notes.

We’ve followed these steps in applying our frame-
work and tools to a course on integrated multime-
dia technology.

Case Study
Our integrated multimedia technology course, sub-
titled “Everything You Always Wanted to Develop
…,” sought to teach students to organize intelligent
dialogues between users and complex systems,
such as virtual environments and multimedia Web
applications. The course went beyond direct con-
trol and conventional mouse- and keyboard-based
interaction, introducing additional interaction mo-
dalities such as speech and camera-based user sens-
ing (see http://amico.sourceforge.net/amico-demos.
html for an illustration). The course’s main focus
was practical work and student creativity. It con-
sisted of lectures, student presentations, and indi-
vidual work in a laboratory and at home. Our lec-
tures focused on integration patterns that showed
how opportunistic software development can en-
able different technologies to work together, while
students explored and presented particular technol-
ogies and combined them to build new solutions.

The class consisted of 32 undergraduate stu-
dents (third and fourth year) from various depart-
ments, including cognitive systems, information
systems, computer sciences, and artificial intel-
ligence. The class also included several exchange
students. Most of the students knew some com-
puting basics, but their programming knowledge
varied from beginner to experienced developers.
Because of the huge diversity of technologies and
students backgrounds, the course provided a good
environment for applying and evaluating our edu-
cational framework.

Students proposed several innovative solutions,
combining a huge range of technologies. Figure 2
shows some of their work, which combines vari-
ous components with available Web services.
Most students learned and used the technologies
for the first time during the course.

Students ranked the course positively, with an
average mark of 4 (on a scale from 1 to 5, where
1 = very bad, 2 = bad, 3 = neutral, 4 = good, and
5 = very good), making the course one of the top
ranked in the department. One encouraging piece
of feedback was students’ desire for similar courses

■

Software
engineering
educators

can also use
interactive art
projects and

hacking
to demonstrate

innovation

�	 I E E E S o f t w a r E w w w . c o m p u t e r . o r g / s o f t w a r e

more often. The main negative feedback was the
lack of course material and documentation.

In organizing the course, we learned some les-
sons in terms of defining the development context,
adapting tools, and using guidelines that support
creative thinking.

Defining the Development Context
To give students ideas about what they might build,
we selected several open source components and
services from the interactive domain, reusing some
components from our previous projects.4 Compo-
nents included

several text-to-speech engines,
a speech recognizer,
a camera-based face detector and motion
detector,
Java 2 Micro Edition modules for interacting
with mobile device vibrations,
a messaging system and GPS sensors,
semantic services such as WordNet,
extensions for the Firefox Web browser, and
interfaces to several Web services, including
the Google search service and spelling checker,
translation services, Alexa statistic service, and
news services.

We created simple service interfaces on top of these
components, but provided documentation for only
a few components.

adapting the tools
We created some simple examples illustrating
how students can use individual components
and how students can interconnect several com-
ponents built using diverse technologies. Several
examples demonstrated the use of speech in inter-
action—for instance, to control Google maps or
interact with Virtual Reality Modeling Language
(VRML) scenes. Other examples illustrated how
students could use face or motion detectors to in-
teract with multimedia content on the Web. We
also created examples that combine the Google
search service and a spelling checker, the Word-
Net definition service, a translation service, and a
text-to-speech engine. Using Web browser exten-
sions, we created an example demonstrating how
to select text from a Web page, call a translation
service, and hear (through a text-to-speech en-
gine) the text’s translation.

Students found our opportunistic software de-
velopment tools to be useful. They used the tools
to explore and learn a particular technology as
well as to connect their components. For example,

■

■

■

■

■

■

■

■

(a)

(c)

(b)

(d)

Figure 2. Example student projects and proposals. (a) The world
time mashup combines the Microsoft Silverlight plugin, Google Maps
Ajax component, and Earthtools.org Web service. (b) The More than
a Song project combines Flex with Amazon, Flickr, and YouTube Web
services. (c) The mobile device interaction with maps project uses
an Amico back end to connect a Flex interface with the OpenStreet
Web service and Java 2 Micron Edition mobile MIDlets (Java programs
for embedded devices). (d) The Wii device adapter lets players use
gestures in virtual and game environments.

	 November/December 2008 I E E E S o f t w a r E 	 �

one group developed a solution in Adobe Flex that
lets users interact with geographic maps through
mobile devices (see Figure 2c). In addition, students
used the tools as a rich test context, in which they
connected their solutions to other components.
One student group developed a Wii adapter and
connected it to Amico to demonstrate the use of
gestures in virtual and game environments already
connected to Amico (see Figure 2d).

Creativity and opportunity Software
Development
The creativity support design principles proved to
be useful guidance for organizing the course. We
wanted to emphasize the importance of creativity
when combining diverse technologies. Here, we de-
scribe some lessons learned, organized according to
the 12 design principles.

Support exploration. We encouraged students to
discover and explore new technologies. One as-
signment asked students to write and present a 2-
to 3-page report about their chosen technology.
Most students were eager to do such explorations,
and their presentations often provoked interesting
discussions. We reduced lecture time to allocate
more time to student presentations. Through their
explorations, students found appropriate pieces of
software and discovered the functionality of poorly
documented components and APIs. They generally
acknowledged that the exploration extended their
understanding of current software technologies’
possibilities.

Low threshold, high ceiling, and wide walls. To lower
the threshold, we simplified installation procedures
for our tools and software components and pro-
vided examples. We still presented sophisticated
technologies (that is, capable of supporting much
more then “hello world” applications) with dozens
of complex components and examples (high ceiling).
We gave no strict limitations on the task or technol-
ogy (wide walls). Creating a low threshold was our
most challenging task, and it was critical for stu-
dents with less development experience—for whom
even setting system variables was a new task.

Support many paths and many styles. Students could
choose the development environment most suited to
their previous knowledge—for example, less experi-
enced students might choose spreadsheets, whereas
more advanced students might choose scripting,
declarative programming, or programming librar-
ies. Because of the huge diversity of students’ back-
ground, having environments suited for various

skills was crucial in enabling all the students to pro-
duce practical results. We also encouraged students
to think about novel environments that would be
most appropriate for them.

Support collaboration. We encouraged students to
discuss their explorations and ideas with others. We
also encouraged them to work in groups of two or
three on their final assignments. Most groups con-
sisted of students with similar backgrounds. In fu-
ture courses, we’ll try to group students with com-
plementary backgrounds and skills.

We encouraged students to post their work on-
line and explore each other’s work, as well as to
participate in discussions on open forums dedicated
to their chosen technology.

Support open interchange. Although we didn’t limit
students’ technology choices, we encouraged them
to make their solutions open and easy to integrate.
This resulted in several useful modules that we’ll re-
use in future courses.

Make it as simple as possible—and maybe even sim-
pler. We tried to maximally simplify use of the
tools and materials. However, we failed to make
our technology simple enough for all students. For
example, early in the course, most comments were
about setting system variables, which we had as-
sumed the students could do without any problem.
We observed that if students couldn’t install and
test examples the first time they tried, they would
be much less enthusiastic about future assignments.

Choose black boxes carefully. Our tools use simple
abstractions and data structures (untyped variables)
that are easy to understand and to map to most
development environments. For most student ex-
amples, these structures were sufficient. However,
when students wanted to combine dozens of com-
plex services, the number of variables increased into
the hundreds. They therefore had to limit the num-
ber of services they wanted to combine.

Invent things that you’d want to use. We built and used
all the tools we introduced during the course. Stu-
dents appreciate lectures about technologies their
instructors are enthusiastic about—in our case,
Amico and service composition. During the course,
students asked many (unexpected) questions, which
are much easier to handle if you’re familiar with the
tools you present.

Balance user suggestions with observation and par-
ticipatory processes. We encouraged students to

In our course,
we wanted to
emphasize the

importance
of creativity

when combining
diverse

technologies.

8 I E E E S o f t w a r E w w w . c o m p u t e r . o r g / s o f t w a r e

think about their systems’ users and how their sys-
tem would be useful to them. We provided some
examples of accessibility. How to involve a greater
number of real user issues remains an open prob-
lem, but this wasn’t the course’s focus.

Iterate, iterate—then iterate again. We supported
rapid prototyping and encouraged students to
work in small steps and to ask questions before
they invested a lot of time in implementation.
When students emailed questions, we responded as
quickly as possible to keep their creative momen-
tum going.

Design for designers. For the fi nal assignment, we
asked students to propose and build a working
prototype. Opportunistic software development
offers a huge range of development environments
and components, enabling students of diverse
backgrounds to build practical and complex inter-
active systems.

Evaluate your tools. We told the students that the
course was new and experimental and that we
wanted their feedback. We asked them to write
about their experience using our tools, and we
used this feedback to fi x the bugs and improve the
course material.

A lthough our initial results are encourag-
ing, they’re only a fi rst step toward a more
synergic mix of opportunistic software de-

velopment and creativity support tools. To encour-
age further development and research, we’ve made
our course materials and software freely available
and reusable by others. In the future, we’ll work
on applications of our framework in other courses,
including introductory computer programming
courses, and address problems such as providing a
uniform debugging environment and documenta-
tion of diverse software resources.

References
 1. C. Ncube, P. Oberndorf, and A.W. Kark, “Opportu-

nistic Software System Development: Making Systems
from What’s Available,” IEEE Software, vol. 25, no. 6,
2008, pp. XX–YY.

 2. F. Martin, “Toy Projects Considered Harmful,” Comm.
ACM, vol. 49, no. 7, 2006, pp. 113–116.

 3. F.P. Brooks Jr., The Mythical Man-Month: Essays on
Software Engineering, 20th anniversary ed., Addison-
Wesley, 1995.

 4. Ž. Obrenovic and D. Gaševic, “Open Source Software:
All You Do Is Put It Together,” IEEE Software, vol. 24,
no. 5, 2007, pp. 86–95.

 5. M. Resnick et al., “Design Principles for Tools to Sup-
port Creative Thinking,” Proc. Workshop Creativity
Support Tools, 2005; www.cs.umd.edu/hcil/CST/Pa-
pers/designprinciples.pdf.

 6. B. Shneiderman, “Creativity Support Tools: Accelerat-
ing Discovery and Innovation,” Comm. ACM, vol. 50,
no. 12, 2007, pp. 20–32.

 7. B. Shneiderman, “Creating Creativity: User Interfaces
for Supporting Innovation,” ACM Trans. Computer–
Human Interaction, vol. 7, no. 1, 2000, pp. 114–138.

 8. G. Conti, “Hacking and Innovation: Introduction,”
Comm. ACM, vol. 49, no. 6, 2006, pp. 32–36.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/csdl.

About the Authors
Željko Obrenović is an assistant professor in the Industrial Design Department
of the Technical University in Eindhoven. His research interests include human-computer
interaction and software engineering. He received his PhD in computer science from the
University of Belgrade. He completed the work presented in this article while he worked at
Centruum Wiskunde & Informatica, Amsterdam. Contact him at z.obrenovic@tue.nl.

Dragan Gaševic is an assistant professor and Ingenuity New Faculty in the School of
Computing and Information Systems at Athabasca University. His research interests include
the Semantic Web, model-driven software engineering, knowledge management, service-
oriented architectures, and learning technologies. He received his PhD in computer science
from the University of Belgrade. Contact him at dgasevic@acm.org.

Anton Eliens is a lecturer at the Vrije Universiteit Amsterdam, where he teaches
multimedia courses and coordinates the Master Multimedia for Computer Science program
there. He received his PhD in computer sciences from Vrije Universiteit. Contact him at
eliens@cs.vu.nl.

Questions?
Comments?

 software@computer.org

Em
ai

l

