Conversations with the Past:

50 Quotes from IFFEFE Software History

ZELJKO OBRENOVIC

Just like Software Engineering, IEEE Software has a very rich history. Since 1984, many of
the leading software engineering professionals have contributed ideas and lessons they
learned to IEEE Software.

In my role as an informal ““curator” of IEEE Software history site [1], | read for the first time
many of the largely forgotten early IEEE Software articles. While lots of these contributions
are obsolete nowadays, | was surprised to find out how much of early work is still actual.

To call attention to relevance of such often forgotten software engineering articles, | created
an alternative view on the IEEE Software history, extracting 50 quotes organized in 25
“conversations”. Each conversation features two quotes, one from the early days of IEEE
Software (1984-1990), and another one more contemporary, with the threshold of at least 20
years in between. In this way, | want to illustrate that some key ideas and topics are
“classical” and have value even decades later.

My selection of quotes is not an attempt to create a systematic overview of all trends in
software engineering. It only scratches the surface. The main goal of this conversations is to
create an interesting and inspirational presentation of software engineering history, at least as
captured by IEEE Software. | want to trigger the curiosity of the reader to study and engage
in such “conversations” with our history themselves. In other words, instead of presenting a
static view on trends, | wanted to create a more dynamic medium, hopefully stimulating
readers to read again old software engineering contributions.

Before presenting the quotes, | would also like to briefly reflect on my view on why many of
the “old” software engineering articles are important today. Figure 1 illustrates my view on
this issue, showing the progress of two sides of software engineering: technological and
human. On the one hand, computing technology has been progressing in a superliner fashion
for years. And software engineering has been closely related to this trend. Moreover,
software has been a main driver behind most of the recent technological advances. In past ten
years, for instance, IEEE Software has covered topics including mobile computing, cloud
computing, big data and analytics, automotive software, internet-of-things, social media and
crowd sourcing, cyber-physical systems, bitcoin and cryptocurrency. These are largely new
phenomena that in their size, complexity and novelty do not have direct parallels with early
years of software engineering and IEEE Software. Lessons learned about some technology
trend 20 years (or in some cases only few years ago), tend to have limited value today. While
such technology-centric contributions are highly relevant at the moment of their publication,
they are normally only a stepping stone in development of technology, with little value for
the next technology generation.

Software Engineering: Computing and Human Sides

A a
Computing Human
capabilities capabilities
-50 years now -10,000 years now

Figure 1: Two sides of software engineering: technological and human. Software
engineering is more about people than about computers. 4 brief remainder on why “old”
software engineering articles are still relevant.

And then there is the human side. Human nature and cognitive capabilities have not advanced
with technology. That is, in my view, the main reason why old software engineering
contributions are still important. Software engineering is more about humans than about
computers. It is primarily concerned with techniques that help people to deal with
complexity, ambiguity, and each other as they build complex software systems. Or, as nicely
expressed by James Coplien [2], the core principles of software architecture, such as coupling
and cohesion, aren't about the code. The code doesn't ‘care’ about how cohesive or decoupled
it is. But people do care about their coupling to other team members. And about these and
many other human issues we can still learn a lot from our past. The challenge is to extract and
keep these lessons.

References
1. Z.Obrenovic, "Insights from the Past: The IEEE Software History Experiment," in |IEEE
Software, vol. 34, no. 4, pp. 71-78, 2017.
2. J. 0. Coplien, "Guest Editor's Introduction: Reevaluating the Architectural Metaphor-
Toward Piecemeal Growth," in IEEE Software, vol. 16, no. , pp. 40-44, 1999.

1, From the Editor-in-Chief,
IEEE Software 1984 (1), p. 4

4

"Many of the challenges facing the software
industry today are a direct result of our insatiable
appetite for new computer-based systems applications.
Others confront us simply because we have not managed
to successfully solve a large number of problems that we
ourselves created many years ago.”

"I believe that in our branch of engineering, above all
others, the academic ideals of rigor and elegance will
pay the highest dividends in practical terms of reducing
costs, increasing performance, and in directing the great
sources of computational power on the surface of a
silicon chip to the use and convenience of man.”

25 Conversations with the Past

haw, Continuing Prospects for an Engineering Discipline of Software,

), pp. 64-67

"Our aspirations grow faster than our capabilities, so |
don't expect software development to ‘get solved.”"

Software

"It’s possible to combine rigor and relevance in
computing research in a fairly simple manner. Will (at
least some) journals require researchers to pursue this
approach? Will researchers begin to employ it? Will
practitioners, once relevant work starts pouring forth
from research journals, pay attention? Our field’s future
relevance is at stake. That communication chasm that
has for so long separated our research and practice
communities might at last begin to go away."

Peter Wegner, Capital-Intensive Software Technology Conclusion, IEEE

Software 1). 3,p. 43

"Periods of rapid technological change require more
innovation and greater risks than periods of stability.”

Bertrand Meyer, On Formalism in Specifications, |EEE Software 1985, no.
1,p.22

"The use of formal notation does not, however, preclude
that of natural language. In fact, mathematical
specification of a problem usually leads to a better
natural-language description. This is because formal
notations naturally lead the specifier to raise some
questions that might have remained unasked, and thus
unanswered, in an informal approach.”

M. Vierhauser, R. Rabiser, P. Granbacher
Systems”, IEEE Software 2016 (issue 5), p. 22

Monitoring Requirements in

Systems o

"The fast-changing nature of our field is one of the
things that make working in software so much fun—and
so challenging."

D. Drusinsky, J. B. Michael, T. W. Otani and
Validation for Trustworthy Software Sy

no., pp. 8 2, 2011

M. Shing, "Verification and
5," in IEEE Software, vol. 28

"Research has shown that formal specifications and
methods help improve the clarity and precision of
requirements specifications."

Software

"An abstraction is a simplified description, or
specification, of a system that emphasizes some of the
system's details or properties while suppressing others. A
good abstraction is one that emphasizes details that are
significant to the reader or user and suppresses details
that are, at least for the moment immaterial or
diversionary.”

indstrom, Du vrie, Experiences wit

EEE Software 19

"The lack of a complete theoretical basis for distributed
computing systems need not inhibit the development of
useful systems. Even without such a basis,
many technical advances have been made by individuals,
who then share them with others, who in turn accept
useful concepts and add further innovations.”

"Determining the appropriate level of abstraction is an
old debate in the patterns community—authors are
always asking, ‘Where should abstraction end?™"

Soltware

GIEEE sz

2007

e (FREE) T

"The capacity to reflect on past practice is important for
continuous learning in software development. Reflection
often takes place in cycles of experience followed by
conscious application of learning from that experience,
during which a software developer might explore
comparisons, ponder alternatives, take diverse
perspectives, and draw inferences, especially in new
and/or complex situations. "

"Today we tend to go on for years, with tremendous
effort to find that the system, which was not well
understood to start with, does not work as anticipated.
We build systems like the Wright brothers built airplanes -
build the whole thing, push it off the cliff, let it crash, and
start over again.” *

SGftware

* NOTE: This is not an accurate
description of how the Wright
brothers worked. They have an
advanced testing approach,
using wind tunnels tests
extensively.

"One of the major challenges facing project software
system managers and maintainers in the 1980's is how to
upgrade large, complex, embedded system, written a
decade or more ago in unstructured languages according
to designs that make modification difficult."”

“39 percent even used the production system as a testing
environment”

EE) S. Johann - IEEE

"It's also important to understand the difference between
what a single programmer can do and what large teams
of programmers can do. Even the best practices of
refactoring are really a joke in the context of a large
legacy application. Refactoring tools really don't help you
with large legacies."

"Designing a computer system is very different from
designing an algorithm: ... the requirement - is less
precisely defined more complex, and more subject to
change; the system has much more internal structure -
hence, many internal interfaces; and the measure of
success is much less clear. The designer usually finds
himself floundering in a sea of possibilities, unclear about
how one choice will limit his freedom to take other
choices or affect the size and performance of the entire-
system.”

"There probably isn't a best way to build the system or
even a major part of it. Much more important is to avoid
choosing a terrible way and to have a clear division of
responsibilities among the parts.”

"Developers of systems of systems face challenges such
as heterogeneous, inconsistent, and changing elements;
continuous evolution and deployment; decentralized
control; and inherently conflicting and often
unknowable requirements."

"Philippe Kruchten has observed that ‘the life of a
software architect is a long and rapid succession of
suboptimal design decisions taken partly in the dark.” "

Peter Wegner, Capital-Intensive Software Technology Conclusion, IEEE
Software 1984, no. 3, p. 43

"Periods of rapid technological change require more
innovation and greater risks than periods of stability.”

M. Vierhauser, R. Rabiser, P. Granbacher, “Monitoring Requirements in
Systems of Systems”, IEEE Software 2016 (issue 5), p. 22

"The fast-changing nature of our field is one of the
things that make working in software so much fun—and
so challenging."

THE MANY FACES g
OF SOFTWARE o
ANALYTICS e

E. Prell and A. Sheng, "Building Quality and Productivity into a Large
Software System," in IEEE Software, vol. 1, no. 2, , pp. 47-54, 1984

"The key to developing larger and more complex software
systems is to improve the way we manage people and
information.”

A. B. Pyster and R. H. Thayer, "Guest Editors' Introduction: Software
Engineering Project Management 20 Years Later," in IEEE Software, vol
22, no. 5, pp. 18-21, Sept.-Oct. 2005

"Twenty years is a very long time in the computing field.
Yet, SEPM([Software Engineering Projects
Management])’s progress has been agonizingly slow in
many ways, probably because it's driven more by human
behavior than by technology. People change their
behavior much more slowly than technology advances."

THE MANY FACES g
OF SOFTWARE o
ANALYTICS »

gner, Capital-Intensive Soft e Technology, IEEE Soft

"The greater speed of technical change means
that capital investment must be recovered more
quickly and that enhancement and evolution consume
proportionately more resources than in a slowly changing
technology. This contributes to the fact that maintenance
and enhancement are the dominant costs in the
software life cycle today.”

Soﬁwo'" o .5t

Nolf, Lori A. Clarke, Jack C. Wileden, Ada-B

rt for

programming-in-tt arge, IEEE Softwa

"In essence, programming-in-the large involves the two
complementary activities of modularization and interface
control. Modularization is the identification of the major
system modules and the entities those modules contain,
where entities are language elements that are given
names, such as subprograms, data objects, and
types. Interface control is the specification and control of
the interactions among entities in different modules."

lopment to Softw
3¢

2016

"You could view maintenance as an impending
operational cost tsunami, owing to seismic development
activities. It’s no longer tenable to keep creating new
individual solutions to the same basic problems because
those solutions must be maintained as long as they live,
binding expensive human resources that are constantly
declining."

Frank Buschmanr)ne Has Gone Before, IEEE

To Boldly Go

Software 2012, no. 1, p. 23

“The 'things between things' require the architect's full
attention: domain concepts hidden between the lines of
code; interactions and interfaces residing between
components; and even choices between design options.
This is the architect's territory, and successful architecture
uncovers the things 'in-between' as early as possible,
make them explicit, and decide about them!”

"All too often maintainers are faced with hard-to-
understand software for which documentation is missing
or out of date. Re-creating the documentation is typically
out of the question in deadline-driven maintenance shops
because of the time required and the difficulty in
understanding software previously maintained without
programming style standards.”

"User interfaces in the software environment are much
like spices in good recipes; the right arrangement must
be found or the food will not show its full flavor. Factors
such as data availability and complexity and the size of
the display must be carefully weighed and accounted for
in the design of any software environment.”

e 2016 (issue 6), p. 98

G. J. Holzma Hi Maintenance - [EEE S

"High-maintenance code not only is verbose but also
tends to rely on unstated, poorly stated, or incompletely
stated assumptions. If you want to understand that type
of code, you need long chains of reasoning to figure out
how and why it works, and under which conditions it
could start failing when other parts of the system are
updated. The reliance on hidden assumptions is probably
the most telling feature of high-maintenance code."

"Interface Design: The user complained about the design,
controls, or visuals. ‘The design isn’t sleek and isn’t very
intuitive.”

"Software quality can be engineered under statistical
quality control and delivered with better quality.”

"To reuse a software component, you first have to find
it."

“We used the c-chart, a quality control chart that’s
widely adopted in statistical process control (SPC) to
study the quality evolution of two well-known, large-scale
open source software systems ... c-charts and patterns
can help QA teams better monitor quality evolution over
a long period of time... The quality evolution patterns in
c-charts are useful to understand the overall quality
history and thus to prioritize QA efforts efficiently.”

Mariani, Scraphe

"If we can find efficient ways to salvage and reuse these
components, we might also recover some of the original
investment and provide a rapid, low-cost means to
develop new products."

Soitware

2011

tial Debuggir FEE Software 2013 (issue 5

"If estimating the time needed for implementing some
software is difficult, coming up with a figure for the time
required to debug it is nigh on impossible"

"No one likes to debug programs, and there is no way to
automate the task."

1987 2013

"The main purposes of the study were to understand
which and how architectural languages (ALs) are used in
the software industry, why some Als aren’t used in
practice, and what AL features are lacking according to
practitioners’ needs."

"Today tools help systems analysts, so why aren’t they
widely used?"

Software research and development in China, |EE twar
), p 53

"The Cultural Revolution that started in 1966 halted all
computer-science activity until 1976, letting China fall far
behind the rest of the world. Three more years passed
until equipment was installed and trained educators
could begin teaching programming classes. With this
base finally established, the Chinese government in 1979
developed a national plan
for software research and development. "

hwald, Frank H. Software

F. Ackerman, L

Inspections: An Effective Verification Process, |IEEE

"Inspections can detect and eliminate faults more
cheaply than testing.”

“The Chinese software industry is experiencing exciting,
tremendous growth. ... the Chinese software industry's
annual revenue grew from 1.3 trillion yuan in 2010 to 3.7
trillion yuan in 2014, a compound annual growth rate of
30 percent. This trend will likely continue into the next
decade thanks to favorable government policies, growing
demand for information infrastructure and services, fast-
paced innovations from aspiring high-tech startups and
industry heavyweights, and a steady supply of software
engineering professionals.”

P.R y, E ry, F. Painchaud, M nd D. Germar
Contemporary Peer Review in Action: Lessons from Open Source

Development, IEEE Software
"Software inspection is a form of formal peer review that

has long been recognized as a software engineering ‘best
practice.”

" TECHNIC
~ DEBT

2012

"A strong common theme among the managers
interviewed was the person’s ability to communicate with
both peers and managers ... Most of the managers are
looking for someone who will be a good team player -
someone who can work for the good of the group and
apply his skills and talents to assist collective goals. ... |
look for someone | can motivate and who wants to be
motivated...”

"Multiparadigm programming makes it possible to
match the paradigm to the problem."

"Do | think that there are some universals? Absolutely |
do. And looking for a team or cultural fit, looking for
people who are motivated and have good
communication and good collaboration, my suspicion is
that those are universal qualities that make people
successful."

"Combining paradigms offers important benefits—for
example, OOP minimizes the conceptual gap between
the problem domain and the implementation in
software, and functional programming (FP) brings
mathematical rigor and robustness to computing,
especially for concurrent applications."

Software

Multiparadigm

GIEEE S

2010

{ix, Guest Editor's Introduction: User Interfaces—Opening a

Window on the Computer, IEEE Software 198 10. 1, p. &

"An interactive system - one with a human-computer
interface - is not judged solely on its ability to compute. It
is also judged on its ability to communicate. In fact, if
users cannot communicate effectively with an interactive
system, its computational ability may be inaccessible.”

B. Dyson, Har s, Guest Editors' Introduction: Using

Metrics to Quantify Development, IEEE Software

). 14

"You can't control what you can't measure. That
fundamental reality underlies the importance of software
metrics, despite the controversy that has surrounded
them since Maurice Halstead put forth his idea of
software science. Skeptics claim metrics are useless and
expensive exercise in pointless data collection, while
proponents argue they are valuable management and
engineering tools.”

Frank Buschmann, Unusable Software Is Useless, Part 1, |[EEE Softw

"Usability has a significant impact on the success of
software-centric systems and products. It relates to the
actual usage of a system, but also to its effective design
and development. Ultimately, failing to build usable
software may degrade a project's ability to deliver in
time, budget, functionality, and quality."

Software

Paraioism on the Deskiop

Y. Yang, D. Fale I. Menzies and J Actionable Analytics for
Software Engineering, in IEEE Software 35, no. 1, pp. 51-5

“Although intensive research on software analytics has
been going on for nearly a decade, a repeated complaint
in software analytics is that industrial practitioners find it
hard to apply the results generated from data science.”

